Abstract
In this study, one-step and two-step pyrolysis systems were compared in the pyrolysis of pine bark. One-step pyrolysis was performed in a fixed bed reactor with and without catalyst. Two-step pyrolysis was carried out in a dual reactor system over catalyst; the first reactor containing no catalyst whereas the second reactor containing catalyst to upgrade the thermally cracked products. The catalysts used in the pyrolysis systems were ReUS-Y, red mud and ZSM-5. In thermal pyrolysis, the pyrolysis system mainly affected the relative amount of bio-oil. The bio-oil yields obtained from two-step thermal pyrolysis were higher than the yields from one-step thermal pyrolysis. In the catalytic runs, ReUS-Y catalyst slightly decreased the char formation with a consequent increase in aqueous phase yield in the case of one-step pyrolysis. However, the catalysts decreased the bio-oil yield with a consequent increase in the gas yield in the case of two-step pyrolysis. The general compositions of bio-oils obtained from both two pyrolysis systems were affected by using catalysts. In the case of one-step pyrolysis, the formation of water and water soluble compounds were reduced by using ReUS-Y catalyst. In the case of two-step pyrolysis, both ZSM-5 and red mud increased the formation of water soluble compounds while they decreased water formation. In contrast, ReUS-Y decreased the formation of water soluble compounds and increased the amount of pyrolytic lignin compounds in bio-oil. Fuel characteristics of pyrolysis products (gas, bio-oil and char) for both two pyrolysis systems were also investigated comparatively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.