Abstract

In the body, connective tissues have a major function in sustaining mechanical stresses. On the other hand, mechanical forces are important factors for connective tissue homeostasis. Connective tissues dynamically interact with mechanical and gravitational stimuli, changing their mechanical properties through the continuous modification of their composition, and thus improving their function. In connective tissues, mechanical forces are major regulators of extracellular matrix turnover, strongly affecting the production of extracellular matrix proteins. On the contrary, unloading conditions, such as bed rest or space flight, have a negative effect on these tissues, with loss of mass and impairment of mechanical properties. Here we describe the effect of photomechanical stress, supplied by a pulsed Nd:YAG laser, on extracellular matrix production by fibroblasts and chondrocytes, and compare it with the effect produced by hypergravity conditions. Cell morphology and structure, extracellular matrix production, cell adhesion, cell energy metabolism have been studied in treated human fibroblasts and chondrocytes by using immunocytochemistry, fluorescence and autofluorescence microscopy. The results show that photomechanical stress induce cytoskeleton remodelling, redistribution of membrane integrins, increase in production of ECM molecules, changes in cell energy metabolism. The effects are similar to those observed in the same cells exposed to cyclic hypergravitational stress (10×g).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.