Abstract

Results of numerical simulation of two- and three-electrode spark gaps operating with pure nitrogen gas are compared. Our result show that in both cases the discharge process evolves via two stages very similar to that was reported in nitrogen glow discharge studies. First, the primary electrons produce positive nitrogen ions; second, the produced ions can disturb the applied field, and can create the space charge region. The undulations observed are because of the secondary effects, in particular, the cathode-directed streamers. The delay time for the three-electrode spark gap is more than that of the two-electrode discharge. Current growth is faster for the two-electrode spark gap in comparison with the three-electrode one. The oscillations are more enhanced for the case of the three-electrode spark gap. Our simulation method provides both temporal and spatial information concerning the operation of such switches. The reported results are helpful in design and optimization of both the two- and three-electrode spark gaps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call