Abstract

In the present paper, seismic performance of a high concrete arch dam is evaluated based on both the stress and strain criteria. For this purpose, the finite element model of the selected arch dam-reservoir-foundation system was provided. Reservoir was modeled using Eulerian approach as a compressible domain and the foundation rock was assumed to be mass-less. Dynamic equilibrium equations for the coupled system were solved using Newmark’s time integration algorithm. Seismic performance evaluation of dam-foundation-reservoir systems were performed considering parameters such as demand-capacity ratio, cumulative inelastic duration and extension of overstressed (or overstrained) areas obtained from linear elastic analyses and compared with the real crack profile from nonlinear analysis. It was found that although results obtained for the stress and strain rules have similarities, performance evaluation based on the strain gives different results which can be lead to different decision making in dam safety related projects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call