Abstract

The traditional blade dicing technology has gone through an impressive evolution keeping up with quality, cost and miniaturization requirements that the semiconductor technology roadmaps introduced and specified. However, since wafer technologies have dropped below 90nm node and low k materials were introduced it became clear that blade dicing evolution came to an end and expensive hybrid solutions such as combined laser grooving processes and blade dicing technologies were required to achieve the desired product reliability. Similar situations have been seen with the ongoing trend to thinner wafer that are needed for miniaturization, 3D packaging and IC performance improvements. To achieve sufficient mechanical strength, complex dicing technologies and sequences have been introduced which do not respond to the requirements for current and near future technologies. This paper will discuss the low-k grooving process by laser pulses for IC wafers. The low-K laser grooving technology allows semiconductor manufacturers to execute the technology roadmap and continue to comply with Moore's law in an efficient manner. In specific this paper will elaborate on the comparison study made between the single beam and multi beam low-K grooving process. Together with a large IDM customer a comparison has been done to determine the results on quality, Heat Affected Zone (HAZ), productivity and yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.