Abstract

In this paper, the results of a comparison between the soil moisture content (SMC) estimated from C-band SAR, the SMC simulated by a hydrological model, and the SMC measured on ground are presented. The study was carried out in an agricultural test site located in North-west Italy, in the Scrivia river basin. The hydrological model used for the simulations consists of a one-layer soil water balance model, which was found to be able to partially reproduce the soil moisture variability, retaining at the same time simplicity and effectiveness in describing the topsoil. SMC estimates were derived from the application of a retrieval algorithm, based on an Artificial Neural Network approach, to a time series of ENVISAT/ASAR images acquired over the Scrivia test site. The core of the algorithm was represented by a set of ANNs able to deal with the different SAR configurations in terms of polarizations and available ancillary data. In case of crop covered soils, the effect of vegetation was accounted for using NDVI information, or, if available, for the cross-polarized channel. The algorithm results showed some ability in retrieving SMC with RMSE generally <0.04 m3/m3 and very low bias (i.e., <0.01 m3/m3), except for the case of VV polarized SAR images: in this case, the obtained RMSE was somewhat higher than 0.04 m3/m3 (≤0.058 m3/m3). The algorithm was implemented within the framework of an ESA project concerning the development of an operative algorithm for the SMC retrieval from Sentinel-1 data. The algorithm should take into account the GMES requirements of SMC accuracy (≤5% in volume), spatial resolution (≤1 km) and timeliness (3 h from observation). The SMC estimated by the SAR algorithm, the SMC estimated by the hydrological model, and the SMC measured on ground were found to be in good agreement. The hydrological model simulations were performed at two soil depths: 30 and 5 cm and showed that the 30 cm simulations indicated, as expected, SMC values higher than the satellites estimates, with RMSE higher than 0.08 m3/m3. In contrast, in the 5-cm simulations, the agreement between hydrological simulations, satellite estimates and ground measurements could be considered satisfactory, at least in this preliminary comparison, showing a RMSE ranging from 0.054 m3/m3 to 0.051 m3/m3 for comparison with ground measurements and SAR estimates, respectively.

Highlights

  • Soil moisture content (SMC), along with its temporal and spatial distribution, is widely considered as a key variable in numerous environmental disciplines, especially in climatology, meteorology, hydrology and agriculture

  • Ground measurements and remote sensing methods can be considered powerful tools for the soil moisture content (SMC) quantification. Ground measurements, such as those obtained by using calibrated probes (e.g., those based on Time Domain Reflectometry (TDR) techniques), can provide reliable point-scale measurements and, in case of distributed sensors, can help in understanding the soil moisture patterns across-scales [6,7]

  • The algorithm used for estimating SMC has already been described in [26,27], and it is based on an artificial neural network (ANN) approach

Read more

Summary

Introduction

Soil moisture content (SMC), along with its temporal and spatial distribution, is widely considered as a key variable in numerous environmental disciplines, especially in climatology, meteorology, hydrology and agriculture. One proposed solution to improve the spatial and temporal resolution of available SMC information and to simulate SMC for deeper soil layers is related to the assimilation of SMC, derived from remote sensing data, into hydrological and land surface models [5,16]. At local scale, some differences due to human interventions need to be properly evaluated in both model and remote sensing estimates, such as the presence of tillage activities In this view, Pellenq [21] indicated that it is essential to accurately understand all the processes involved in the soil moisture variability as well as their scale interactions.

Test Site and Available Data Sets
Retrieval Approach for Estimating SMC from SAR Images
Description of the Hydrological Model
Comparison of Results and Discussion
Conclusions and Future Works
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.