Abstract

Experimental measurements of the latency of transient evoked otoacoustic emission and auditory brainstem responses are compared, to discriminate between different cochlear models for the backward acoustic propagation of otoacoustic emissions. In most transmission-line cochlear models otoacoustic emissions propagate towards the base as a slow transverse traveling wave, whereas other models assume fast backward propagation via longitudinal compression waves in the fluid. Recently, sensitive measurements of the basilar membrane motion have cast serious doubts on the existence of slow backward traveling waves associated with distortion product otoacoustic emissions [He et al., Hear. Res. 228, 112-122 (2007)]. On the other hand, recent analyses of "Allen-Fahey" experiments suggest instead that the slow mechanism transports most of the otoacoustic energy [Shera et al., J. Acoust. Soc. Am. 122, 1564-1575 (2007)]. The two models can also be discriminated by comparing accurate estimates of the otoacoustic emission latency and of the auditory brainstem response latency. In this study, this comparison is done using human data, partly original, and partly from the literature. The results are inconsistent with fast otoacoustic propagation, and suggest that slow traveling waves on the basilar membrane are indeed the main mechanism for the backward propagation of the otoacoustic energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call