Abstract

The model-based and non-isothermal model-free procedures have been applied for prediction of conversion-time curves of calcium carbonate decomposition. In this purpose, the thermogravimetric (TG) curves corresponding to decomposition of CaCO3 have been recorded in nitrogen flow in non-isothermal conditions at constant heating rates of 2.5; 5.0; 7.5; 10.0; 12.5 and 14.9 K min−1, and in other temperature programs that exhibit the following final isothermal steps: 650 °C; 660 °C; 670 °C and 700 °C.To apply model-based procedure, the most probable kinetic schemes and corresponding kinetic parameters have been determined by using the non-isothermal data, and the isoconversional and “multivariate nonlinear regression” (“Multivar-NLR”) methods. By comparing the experimental and predicted conversion-time curves that exhibit a final isothermal step, it as been obtained that the most probable kinetic scheme consists a reversible reaction of CaCO3 decomposition followed by diffusion of carbon dioxide.The non-isothermal model free prediction procedure has been also used for assessment of conversion-time curves that exhibit a final isothermal step. Both model-based procedure and non-isothermal model-free procedure lead to satisfactory agreements between experimental and calculated conversion curves corresponding to temperature programs that exhibit a final isothermal step, but the curves predicted by a non-isothermal model-free procedure have a large deviation from the experimental ones than those predicted by model-based procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call