Abstract
The internal micro-structure of glass and carbon fibre-reinforced polymer (FRP) rebars subjected to tensile loading was investigated using micro computed tomography (μCT) and scanning electron microscopy (SEM) images. Three dimensional (3D) and two dimensional (2D) reconstructed μCT images were used to study and quantify the void volume and its distribution along with FRP rebar samples after being subjected to tensile loads. The void volume was observed to increase in all samples as the tensile load on the samples was increased. Acoustic emission (AE) monitoring during the tensile loading was also employed to establish a correlation between the AE parameters and damage evolution in the FRP samples. Cumulative energy of AE signal in frequency domain was used to monitor the progression of the internal damage in the FRP reinforcing rebars. A high correlation was observed between the void volume measured by μCT and SEM and the cumulative energy of the AE signal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.