Abstract

BackgroundHybrid eco-physiological/mensurational models of forest production generally require monthly meteorological estimates at local points in the landscape as inputs. Where to obtain these estimates and how best to localise them are important questions for modellers. Data collected from nine independent meteorological stations were compared with estimates from the nearest grid points of the Virtual Climate Station Network created by the New Zealand National Institute of Water and Atmospheric Research (NIWA) and also to estimates from NIWA’s nearest actual meteorological stations. FindingsLocalisation of temperature estimates was attempted through simple adiabatic adjustments of NIWA’s data and also adjustments that use elevation above sea level, latitude and distance from the sea. The latter adjustment was found to be slightly better than simple adiabatic adjustment. Results showed that useable local estimates can be obtained from absolute global solar radiation and adjusted mean daily maximum and minimum temperatures although there were small amounts of bias. Rainfall and relative humidity were not as well estimated for local points as the other variables and these poorer estimates may constrain our ability to model forest productivity in drier regions of New Zealand.ConclusionsMonthly mean global radiation, and suitably adjusted estimates of mean daily maximum and minimum temperature from the Virtual Climate Station Network were found to estimate these properties for points in the landscape with reasonable precision and small bias. Rainfall, however, was imprecisely estimated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call