Abstract

BackgroundAs a main cause of mortality in developed countries, Coronary Artery Disease (CAD) is known as silent killer with a considerable cost to be dedicated for its treatment. Coronary Artery Bypass Graft (CABG) is a common remedy for CAD for which different blood vessels are used as a detour. There is a lack of knowledge about mechanical properties of human blood vessels used for CABG, and while these properties have a great impact on long-term patency of a CABG. Thus, studying these properties, especially those of human umbilical veins which have not been considered yet, looks utterly necessary.MethodsUmbilical vein, as well as human Saphenous vein, are respectively obtained after cesarean and CABG. First, histological tests were performed to investigate different fiber contents of the samples. Having prepared samples carefully, force-displacement results of samples were rendered to real stress–strain measurements and then a fourth-order polynomial was used to prove the non-linear behavior of these two vessels.ResultsResults were analyzed in two directions, i.e. circumferentially and longitudinally, which then were compared with each other. The comparison between stiffness and elasticity of these veins showed that Saphenous vein’s stiffness is much higher than that of umbilical vein and also, it is less stretchable. Furthermore, for both vessels, longitudinal stiffness was higher than that of circumferential and in stark contrast, stretch ratio in circumferential direction came much higher than longitudinal orientation.ConclusionBlood pressure is very high in the region of aorta, so there should be a stiff blood vessel in this area and previous investigations showed that stiffer vessels would have a better influence on the flow of bypass. To this end, the current study has made an attempt to compare these two blood vessels’ stiffness, finding that Saphenous vein is stiffer than umbilical vein which is somehow as stiff as rat aortic vessels. As blood vessel’s stiffness is directly related to elastin and mainly collagen content, results showed the lower amount of these two contents in umbilical vein regarding Saphenous vein.

Highlights

  • As a main cause of mortality in developed countries, Coronary Artery Disease (CAD) is known as silent killer with a considerable cost to be dedicated for its treatment

  • Obtained data was imported in MATLAB (Mathworks, MA, USA 2010) and in order to reduce any probable noise, the average of 3 data points was estimated for each point

  • We categorized three main methods for determination of elastomechanical properties of blood vessels and universal testing machine is used for obtaining stress-stretch results

Read more

Summary

Introduction

As a main cause of mortality in developed countries, Coronary Artery Disease (CAD) is known as silent killer with a considerable cost to be dedicated for its treatment. Coronary Artery Bypass Graft (CABG) is a common remedy for CAD for which different blood vessels are used as a detour. There is a lack of knowledge about mechanical properties of human blood vessels used for CABG, and while these properties have a great impact on long-term patency of a CABG. Studying these properties, especially those of human umbilical veins which have not been considered yet, looks utterly necessary. One third of the SV grafts are occluded after 10 years, whereas mammary shows more inspiring results [3,4,5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call