Abstract

Molecular dynamics simulation on some molecular liquids was performed to study sound dispersion on the molecular scale. The sound velocity was determined from the intermediate scattering function, and the relation between the longitudinal modulus and frequency was compared with the frequency-dependent longitudinal modulus in the q = 0 limit evaluated by the Kubo-Green theory. The sound dispersion of a monoatomic liquid up to qσ ≅ 2 was almost quantitatively explained by the viscoelasticity in the q = 0 limit when the wavenumber dependence of the heat capacity ratio was taken into account. The situation was similar for a polyatomic molecular liquid for which the intramolecular degrees of freedom were fixed. For a polyatomic liquid with intramolecular degrees of freedom, the sound dispersion on the molecular scale was connected to the high-frequency limit of the ultrasonic relaxation mode assigned to the vibrational energy relaxation. After subtracting the contribution of the vibrational energy relaxation, both the longitudinal viscoelasticity and the sound dispersion depended little on the presence of intramolecular degrees of freedom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.