Abstract

In vitro activities of key enzymes and related parameters (ATP and ADP concentrations, intracellular pH (pH i ), cell volume and the transmembrane ΔpH) in various continuous and batch fermentations of Clostridium acetobutylicum were studied in order to investigate the regulation (genetic vs. enzyme level) of the solventogenesis process. In vitro activities varied significantly among an acidogenic (glucose limited) and three solventogenic (an iron limited, a CO gassed and a biomass recycle) continuous fermentations. However, in vitro enzyme activities did not correlate with in vivo specific production rates in continuous cultures indicating that solvent formation is regulated primarily at the enzyme level. Carbon monoxide (CO) gassing of an acidogenic continuous culture resulted in butyrate uptake without acetone formation due to inactivation of the acetoacetate decarboxylase by CO. In continuous, and to some extent in batch cultures, butyrate can be taken up via the reversal of the butyrate kinase and phosphotransbutyrylase pathway. Solvent formation in batch fermentations is both a result of enzyme induction and regulation. Acetone formation and the induction of acetoacetate decarboxylase occur simultaneously whereas both alcohol dehydrogenases are induced several hours before initiation of alcohol production. Finally, the levels of intracellular and related cell parameters (pH i , ΔpH, ATP and ADP concentrations) are discussed and related to the possible mechanisms of solventogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.