Abstract

Several possible binary complexes among ammonia-borane, aminoborane, and ammonia, via hydrogen and/or dihydrogen bonds, have been investigated to understand the effect of different hybridization. Møller–Plesset second-order perturbation theory with aug-cc-pVDZ basis set was used. The interaction energy is corrected for basis set superposition error, and the Morokuma–Kitaura method was employed to decompose the total interaction energy. Like H3BNH3, the sp2 hybridized H2BNH2 also participates in H- and dihydrogen bond formation. However, such bonds are weaker than their sp3 analogs. The contractions of BN bonds are associated with blueshift in vibrational frequency and stretches of BH and NH bonds with redshift. The polarization, charge transfer, correlation, and higher-order energy components are larger in dihydrogen bonded complexes, compared to classical H-bonded ammonia dimers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.