Abstract

The demand of air bearings is increasing for those applications that require precision linear movements or high-speed rotations. In particular in this paper air pads for air motion technology are studied. The paper analyses the effect of a circumferential groove machined on the pad surface on pressure distribution, air flow consumption and stiffness. Two geometries are investigated and compared: one with three supply orifices and the other with a circumferential groove as well. The static characteristics of the pads are experimentally determined with also the pressure distributions under the pads along the radial and circumferential directions. The experimental pressure distributions are compared with the simulated ones, obtained with a numerical program at the purpose developed. The numerical model considers a general formulation of the supply holes discharge coefficient that can be used also in presence of a circumferential groove.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.