Abstract

The comparison between Tramadol drug loaded microspheres prepared from gelatin/sodium carboxymethyl cellulose (NaCMC) and those prepared from gelatin/sodium carboxymethyl nanocellulose (NaCMNC) in presence of glutaraldehyde (GA) as cross linker was carried out. Cellulose isolated from rice straw was hydrolyzed using 65% H2SO4 to prepare nanoparticles with average particle size ranging from 44 to 66 nm. Various formulations of gelatin/NaCMC and gelatin/NACMNC were prepared with different ratios of amounts of gelatin, NaCMC/NaCMNC, and GA. Microspheres were characterized by fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy. The FTIR spectroscopy results confirmed the structure of microsphere and the absence of chemical interactions among Tramadol drug, polymer, and crosslinking agent. The ultraviolet spectroscopy showed 68% efficiency of the drug encapsulation using cellulose, while 55% for nanocellulose. The equilibrium water uptake decreased from 646 to 329% for cellulose microspheres, when the amount of GA increased from 5 to 10 mL. In contrast, the equilibrium water uptake decreased significantly from 501 to 33.7% for nanocellulose microspheres. The yield percentage enhanced from 54.67 to 80% for nanocellulose microspheres. The in vitro release rate was also calculated. The percent cumulative release of drug was significantly increased at the first 2 h and then a slow increase was further noticed. In general, the nanocellulose microsphere showed lower release rates than cellulose. None of the prepared microsphere presented 100% drug release until 12 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call