Abstract

Optical coherence tomography (OCT) with axial and lateral resolution of 1 µm, termed microscopic OCT (mOCT), is suited for the investigation of dynamic processes on cellular level. An improvement in contrast to visualize cellular structures can be achieved by evaluating inherent signal fluctuation. This so-called dynamic contrast was recently demonstrated for the widely used scanning frequency domain OCT (FD-OCT). Here we show comparative measurements of dynamic microscopic OCT (dmOCT) and multiphoton autofluorescence imaging of ex-vivo trachea. Compared to multiphoton microscopy, the dmOCT provides greater penetration depth, can visualize structures that are not detectable by autofluorescence imaging and has no risk of photodamage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call