Abstract
AbstractPotential Evapotranspiration (PET) plays a crucial role in water management, including irrigation systems design and management. It is an essential input to hydrological models. Direct measurement of PET is difficult, time-consuming and costly, therefore a number of different methods are used to compute this variable. This study compares the two sensitivity analysis approaches generally used for PET impact assessment on hydrological model performance. We conducted the study in the Upper Benue River Basin (UBRB) located in northern Cameroon using two lumped-conceptual rainfall-runoff models and nineteen PET estimation methods. A Monte-Carlo procedure was implemented to calibrate the hydrological models for each PET input while considering similar objective functions. Although there were notable differences between PET estimation methods, the hydrological models performance was satisfactory for each PET input in the calibration and validation periods. The optimized model parameters were significantly affected by the PET-inputs, especially the parameter responsible to transform PET into actual ET. The hydrological models performance was insensitive to the PET input using a dynamic sensitivity approach, while he was significantly affected using a static sensitivity approach. This means that the over-or under-estimation of PET is compensated by the model parameters during the model recalibration. The model performance was insensitive to the rescaling PET input for both dynamic and static sensitivities approaches. These results demonstrate that the effect of PET input to model performance is necessarily dependent on the sensitivity analysis approach used and suggest that the dynamic approach is more effective for hydrological modeling perspectives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.