Abstract
Gigacycle fatigue properties of materials are strongly affected by the specimen risk volume (volume of material subjected to a stress amplitude larger than the 90% of the maximum stress). Gigacycle fatigue tests, performed with ultrasonic fatigue testing machines, are commonly carried out by using hourglass shaped specimens with a small risk volume. The adoption of traditional dog-bone specimens allows for increasing the risk volume, even if the increment is quite limited. In order to obtain larger risk volumes, a new specimen shape is proposed (Gaussian specimen). The dog-bone and the Gaussian specimens are compared through Finite Element Analyses and the numerical results are validated experimentally by means of strain gages measurements. The range of applicability of the two different specimens in terms of available risk volume and stress concentration effects due to the cross section variation is determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.