Abstract

Several cosmological models have been proposed in order to explain the current acceleration of the Universe. Recently, the normal branch of the DGP (after Dvali, Gabadadze, and Porrati) brane model with a generalized Chaplygin gas was studied as a model which can cross the phantom divide line avoiding the future singularity. In the present work, we wish to address the question of whether or not the aforementioned model has a better fit to supernovae data compared to cold dark matter with a cosmological constant, the (generalized) Chaplygin gas, and the DGP model with the self-accelerating branch without extra fluid for dark energy. We have found that the Chaplygin-DGP model has the worst fit, while the two-fluid model with Chaplygin gas and dust (baryons) has the best fit among the theoretical cosmological models considered here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.