Abstract

BackgroundIdiopathic pulmonary fibrosis (IPF) is a treatment resistant disease with poor prognosis. Numerous compounds have been demonstrated to efficiently prevent pulmonary fibrosis (PF) in animal models but only a few were successful when given to animals with established fibrosis. Major concerns of current PF models are spontaneous resolution and high variability of fibrosis, and the lack of assessment methods that can allow to monitor the effect of drugs in individual animals over time. We used a model of experimental PF in rats and compare parameters obtained in living animals with conventional assessment tools that require removal of the lungs.MethodsPF was induced in rats by adenoviral gene transfer of transforming growth factor-beta. Morphological and functional changes were assessed for up to 56 days by micro-CT, lung compliance (measured via a mechanical ventilator) and VO2max and compared to histomorphometry and hydroxyproline content.ResultsStandard histological and collagen assessment confirmed the persistent fibrotic phenotype as described before. The histomorphological scores correlated both to radiological (r2 = 0.29, p < 0.01) and functional changes (r2 = 0.51, p < 0.0001). VO2max did not correlate with fibrosis.ConclusionThe progression of pulmonary fibrosis can be reliably assessed and followed in living animals over time using invasive, non-terminal compliance measurements and micro-CT. This approach directly translates to the management of patients with IPF and allows to monitor therapeutic effects in drug intervention studies.

Highlights

  • Idiopathic pulmonary fibrosis (IPF) is a treatment resistant disease with poor prognosis

  • Idiopathic pulmonary fibrosis (IPF) is a progressive disease of unknown origin characterized by increased matrix deposition, resulting in functional impairment and respiratory failure [1]

  • Several hundreds of compounds were identified in various models of experimental PF and proposed to have therapeutic potential for IPF [5]

Read more

Summary

Introduction

Idiopathic pulmonary fibrosis (IPF) is a treatment resistant disease with poor prognosis. Numerous compounds have been demonstrated to efficiently prevent pulmonary fibrosis (PF) in animal models but only a few were successful when given to animals with established fibrosis. We used a model of experimental PF in rats and compare parameters obtained in living animals with conventional assessment tools that require removal of the lungs. Idiopathic pulmonary fibrosis (IPF) is a progressive disease of unknown origin characterized by increased matrix deposition, resulting in functional impairment and respiratory failure [1]. Assessment tools used in experimental PF are primarily based on histology and quantitative collagen analysis, providing a snapshot of a complex and chronic biological process [8], whereas clinical management of IPF relies on physiologic parameters (lung function, exercise test, echocardiography) and radiology (chest x-ray and high resolution computed tomography). Clinical trials are designed to detect changes in survival and/or lung function parameters [9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.