Abstract

Control-based continuation (CBC) and phase-locked loops (PLL) are two experimental testing methods that have demonstrated great potential for the non-parametric identification of key nonlinear dynamic features such as nonlinear frequency responses and backbone curves. Both CBC and PLL exploit stabilizing feedback control to steer the dynamics of the tested system towards the responses of interest and overcome important difficulties experienced when applying conventional testing methods such as sine sweeps to nonlinear systems. For instance, if properly designed, the feedback controller can prevent the system from exhibiting untimely transitions between coexisting responses or even losing stability due to bifurcations. This contribution aims to highlight the similarities that exist between CBC and PLL and present the first thorough comparison of their capabilities. Comparisons are supported by numerical simulations as well as experimental data collected on a conceptually simple nonlinear structure primarily composed of a thin curved beam. The beam is doubly clamped and exhibits nonlinear geometric effects for moderate excitation amplitudes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.