Abstract

Sagittal curvatures of the spine can be assessed using the constrained or non-constrained Cobb techniques. However, there is no study that specifically compares these two techniques. The objective of this study is to assess the reproducibility and clinical relevance of the non-constrained Cobb technique (non-constrained limit vertebrae) compared to the constrained Cobb technique (constrained limit vertebrae). Standing sagittal radiographs of the spine of ten adolescents with idiopathic scoliosis, ten adolescents with spondylolisthesis and ten normal adolescents were selected. Thoracic kyphosis (TK) and lumbar lordosis (LL) were measured twice by three observers using both constrained and non-constrained Cobb techniques. Pearson's correlation coefficients, as well as intra- and inter-observer intra-class correlation coefficients (ICC) were calculated. Inter-observer ICCs were similar for TK and LL with both techniques, ranging from 0.84 to 0.89. Intra-observer ICCs for both techniques were between 0.74 and 0.92 for TK, while they were between 0.87 and 0.97 for LL. The two techniques were highly correlated for the measurement of the TK (r = 0.96) and LL (r = 0.94). Computer-assisted assessment of the sagittal profile using the non-constrained Cobb technique provides excellent reproducibility. As opposed to the constrained Cobb technique, the non-constrained Cobb technique takes into account the variability in the level of transition between the TK and LL. However, adequate use of this technique requires accurate identification of the limit vertebrae in the thoracolumbar spine. Consequently, a computer-assisted technique is recommended when using the non-constrained Cobb technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.