Abstract

The performance of charged aerosol detection (CAD) was compared to evaporative light scattering detection (ELSD) for the analysis of Leishmania membrane phospholipid (PL) classes by NP-HPLC. In both methods, a PVA-Sil column was used for the determination of the major Leishmania membrane PLs, phosphatidic acid, phosphatidylglycerol, cardiolipin, phosphatidylinositol, phosphatidylethathanolamine, phosphatidylserine, lysophosphatidylethathanolamine, phosphatidylcholine, sphingomyelin and lysophosphatidylcholine in the same analysis. Although the response of both detection methods can be fitted to a power function, CAD response can also be described by a linear model with determination coefficients (R2) ranging from 0.993 to 0.998 for an injected mass of 30ng to 20.00μg. CAD appeared to be directly proportional when a restricted range was used and it was found to be more sensitive at lowest mass range than ELSD. With HPLC-ELSD the limits of detection (LODs) were between 71 and 1195ng and the limits of quantification (LOQs) were between 215 and 3622ng. With HPLC-CAD, the LODs were between 15 and 249ng whereas the limits of quantification (LOQs) were between 45 and 707ng. The accuracy of the methods ranged from 62.8 to 115.8% and from 58.4 to 110.5% for ELSD and CAD, respectively. The HPLC-CAD method is suitable to assess the influence of miltefosine on the composition of Leishmania membrane phospholipids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.