Abstract
Model updating procedures based on experimental data are commonly used in case of historic buildings to identify numerical models that are subsequently employed to assess their structural behaviour. The reliability of these models is closely related to their ability to account for all the uncertainties that are involved in the knowledge process. In this regard, to handle these uncertainties and quantify their propagation, Bayesian inference is frequently employed being able to deal with the effects of parameter uncertainty, observation errors and model inadequacy. The computation of the posterior distribution through Bayesian inference needs–however–the evaluation of the likelihood function, which requires solving complex multi-dimensional integration problems. To bridge this shortcoming, the paper compares two Bayesian inference approaches to show how different approximations affect the results of simulated inference: a discrete approach for the likelihood computation in the Bayesian Model Updating (BMU) and a Monte Carlo likelihood-free method known as Approximate Bayesian Computation (ABC) are reported. As reference, the typology of historic masonry towers was considered by using their natural frequencies as experimental data for model updating. The two procedures provide very similar results supporting the validity of both methods despite ABC turns out to be a more flexible approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.