Abstract

ABSTRACTWe use the Peierls-Nabarro continuum mechanics model of dislocation nucleation, modified according to the results of atomistic simulations, to interpret the experimental results of fracture response in symmetric-tilt grain boundaries in Cu. We then directly perform Molecular Dynamics simulations of fracture propagation and dislocation emission from a microcrack placed in the interface plane of the symmetric-tilt (221)(221) grain boundary in fee Cu. Direction-dependent fracture response is observed in agreement with experiments, namely the microcrack advancing by brittle fracture along the [114] direction and being blunted by dislocation emission along the opposite [114] direction. Moreover, we are able to quantify important differences with respect to the continuum model due to the shielding of the stress field at the crack-tip and to the presence of the excess stress at the interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call