Abstract

Motion of an electric dipole, having same type of charge on both poles, in a parallel electric field is studied. The magnitude of the electric field is allowed to vary in the direction perpendicular to its polarization and to remain constant along the direction parallel to the polarization. This electric field applies asymmetric electric force on the dipole, which imprints a motion of rotation. Mathematical analysis of this motion proves that a single particle or a rigid body with inhomogeneous or homogeneous charge density distribution subjected to this electric field follows a motion of rotation too. This curved path appears to be analogous to the curved path followed by the same charged particle in the magnetic field produced by a straight long conductor carrying a steady electric current. However, the asymmetric electric force acts along the direction of motion and the magnetic force acts in the direction perpendicular to the motion of the charged particle, consequently, they produce different effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.