Abstract

Accurate forecasting of future electricity consumption is necessary to create a satisfactory design for an electricity distribution system. To enhance forecasting accuracy, autoregressive integrated moving average (ARIMA) was compared with hybrid of ensemble empirical mode decomposition (EEMD) plus autoregressive integrated moving average (ARIMA) denoted by (EEMD+ARIMA), to know which model is better performing a historical US monthly electricity consumption from DEC-2000 to SEP-2022 were used. The data were divided into training set (90%) and testing set (10%) to insure the model accuracy. The mean absolute square error, root mean square error, mean absolute error and mean absolute percentage error measurements were used to test the ARIMA and hybrid EEMD+ARIMA performance, the results show that the hybrid EEMD+ARIMA outperforms ARIMA model with the lowest RMSE, MAE, MPE, MAPE, MASE. For the best model, Akaike Information Criterion and Bayesian Information Criterion were applied to choose the best. The results show that the AIC and BIC of the EEMD+ARIMA were lower than the ARIMA model, which indicates that the EEMD+ARIMA is better than the single ARIMA in forecasting of electricity consumption. The conclusion reveals that the hybrid EEMD+ARIMA provides more accurate forecasting and performs significantly better than the ARIMA in forecasting of electricity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call