Abstract

The mosquito sampling efficiency of CDC (Centers for Disease Control) miniature light traps hung adjacent to mosquito nets, was compared with that of both indoor and outdoor human-bait collections in ten villages in the Wosera area of Papua New Guinea. The most frequently collected anopheline in the matched indoor and light trap samples was Anopheles koliensis Owen, followed by A. punctulatus Dönitz, A. karwari (James), A. farauti Laveran (sensu lato), A. longirostris Brug and A. bancroftii Giles. All species were much less frequent in the light traps than in landing catches. The hypothesis that the numbers of mosquitoes in light traps are proportional to human landing catches was examined using regression models that allowed for sampling error in both entomological measurements. Light traps under-sampled A. punctulatus and A. farauti s.l. at high densities. The models indicated that the ratio of light trap to landing catch females of A. koliensis and A. karwari increased with increasing mosquito density. Light trap catches of A. longirostris were proportional to indoor landing rates but when outdoor landing rates were high this species was under-sampled by light traps. Numbers of A. bancroftii in light traps were found to be proportional to those in outdoor landing catches, but were negatively related to those attempting to bite indoors. Circumsporozoite positivity rates for both Plasmodium falciparum Welch and P. vivax (Grassi & Feletti) in A. punctulatus and A. farauti s.l. were significantly higher in light trap collections than in either indoor or outdoor landing catches, suggesting that light traps may selectively sample older mosquitoes of these species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call