Abstract

Free-electron laser simulation codes employ either the Slowly-Varying Envelope Approximation (SVEA) or a Particle-in-Cell (PiC) formulation. Maxwell’s equations are averaged over the fast time scale in the SVEA so that there is no need to resolve the wave period. In contrast, the fast oscillation is retained in PiC codes. As a result, the SVEA codes are much less computationally intensive and are used more frequently than PiC codes. While the orbit dynamics in PiC codes and some SVEA Codes (MEDUSA and MINERVA) use the full unaveraged Lorentz force equations, some SVEA codes use the Kroll-Morton-Rosenbluth (KMR) approximation (GENESIS, GINGER, FAST, and TDA3D). Steady-state simulation comparisons [1] have appeared in the literature between different codes using the averaged and unaveraged particle dynamics. Recently, a comparison between three KMR SVEA codes (GENESIS, GINGER, and FAST) and the PUFFIN PiC code in the time-dependent regime has been reported [2]. In this paper, we present a comparison between the unaveraged PiC code PUFFIN, the unaveraged SVEA code MINERVA for the time-dependent simulation of SASE free-electron lasers with the experimental measurements from SPARC SASE FEL at ENEA Frascati.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.