Abstract

Solar energy is one of the main alternatives for the decarbonization of the electricity sector and the reduction of the existing energy deficit in some regions of the world. However, one of its main limitations lies in its storage, since this energy source is intermittent. This paper evaluates the potential of an underground thermal energy storage tank supplied by solar thermal collectors to provide hot water for the activation of a single-effect absorption cooling system. A simulator was developed in TRNSYS 17 software. Experimentally on-site measured data of soil temperature were used in order to increase the accuracy of the simulation. The results show that the underground tank reduces thermal energy losses by 27.6% during the entire hot period compared with the air-exposed tank. The electrical energy savings due to the reduction in pumping time during the entire hot period was 639 kWh, which represents 23.6% of the electrical energy consumption of the solar collector pump. It can be concluded that using an underground thermal energy storage tank is a feasible option in areas with high levels of solar radiation, especially in areas where ambient temperature drops significantly during night hours and/or when access to electrical energy is limited.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call