Abstract

The robustness and accuracy of Reynolds-averaged Navier–Stokes (RANS) models was investigated for complex turbulent flow in an open channel receiving lateral inflow, also known as spatially varied flow with increasing discharge (SVF). The three RANS turbulence models tested include realizable k–ε, shear stress transport k–ω and Reynolds stress model based on their prominence to model jets in crossflows. Results were compared to experimental laser Doppler velocimetry measurements from a previous study. RANS results in the uniform flow region and farther from the jet centreline were more accurate than within the lateral inflow region. On the leeward side of the jet, RANS models failed to capture the downward velocity vectors resulting in major deviations in vertical velocity. Among RANS models minor variations were noted at impingement and near the water surface. Regardless of inadequately predicting complex characteristics of SVF, RANS models matched experimental water surface profiles and proved more superior to the theoretical approach currently used for design purposes.

Highlights

  • In open channel flow to present the velocity and Reynolds stresses in dimensionless form by dividing by the shear velocity, u*

  • In the stream-wise direction, numerical models are an excellent match to experimental data in the uniform flow region upstream of the lateral inflow region and at z = 0.075 m in the span-wise direction

  • Downstream of the lateral inflow region, numerical models underestimate velocity profiles, the general shape is in agreement with experiments

Read more

Summary

Objectives

The aim of this paper was to establish if turbulence models were capable of matching SVF experimental data and to identify the RANS model that gives optimum results

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.