Abstract

In order to find a tool for comparison of solvate stability and to rationalize their relative stability, droperidol nonstoichiometric isostructural solvates were characterized experimentally and computationally. For the experimental evaluation of stability, three comparison tools were considered: thermal stability characterized by the desolvation rate, desolvation activation energy, and solvent sorption–desorption isotherms. It was found that the desolvation process was limited by diffusion, and the same activation energy values were obtained for all of the characterized solvates, while the solvent content in the sorption isotherm was determined by the steric factors. Therefore, the only criterion characterizing the solvate stability in this particular system was the thermal stability. It was found that computationally obtained solvent–droperidol and solvent–solvent interaction energies could be used for the rationalization of the isostructural solvate stability in this system and that the solvent–solvent...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.