Abstract
We present some new necessary and sufficient conditions for the oscillation of second order nonlinear dynamic equation $$\bigl(a\bigl(x^{\Delta }\bigr)^{\alpha }\bigr)^{\Delta }(t)+q(t)x^{\beta }(t)=0$$ on an arbitrary time scale \(\mathbb{T}\) , where α and β are ratios of positive odd integers, a and q are positive rd-continuous functions on \(\mathbb{T}\) . Comparison results with the inequality $$\bigl(a\bigl(x^{\Delta }\bigr)^{\alpha }\bigr)^{\Delta }(t)+q(t)x^{\beta }(t)\leqslant 0\quad (\geqslant 0)$$ are established and application to neutral equations of the form $$\bigl(a(t)\bigl(\bigl[x(t)+p(t)x[\tau (t)]\bigr]^{\Delta }\bigr)^{\alpha }\bigr)^{\Delta }+q(t)x^{\beta }\bigl[g(t)\bigr]=0$$ are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.