Abstract

As is well known, chromatic dispersion (CD) and nonlinear effect such as self-phase modulation (SPM), cross-phase-modulation (XPM), and four-wave-mixing (FWM), as well as their impairments interaction with each other are recognized as a limiting impairment for a high bit rates optical systems. With the advent of the 40 Gb/s, it is necessary to study transmission performance, which clearly depends on the modulation format and the system design. A numerical comparison of non-return-to-zero (NRZ), return-to-zero (RZ) and differential phase shift keying (DPSK) formats is made at a bit rate of 40 Gbit/s for single-channel and WDM systems with different compensation method in attempt to find the optimum modulation format. The transmitter under consideration used a 1.5 um DFB-laser externally modulated by a MZM modulator with modulation format (NRZ, RZ, DPSK), 64 PRBS data. At the receiver end an optical filtering using gaussian, fabry-perot and rectangular filter is used. Between the compensation method the symmetrical design leaves the best results in comparison to pre- and post-compensation. The impact of SPM can be reduced considerably by the symmetrical design. NRZ shows a best toleranz again chromatic dispersion and DPSK a best toleranz to Nonlinearity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.