Abstract

Three generation systems, namely, steam Rankine cycle (SRC), organic Rankine cycle (ORC), and steam-organic combined Rankine cycle (S-ORC), were simulated using the Engineering Equation Solver (EES) to efficiently utilize flue gas emissions from 200 to 450 °C in iron and steel plants. Based on the simulation results for thermal efficiency, exergy efficiency, and power generation, the performances of the three power generation systems were compared and analyzed. To further utilize waste heat from the turbine exhaust steam of the ORC system, cascade ORC (CORC) was designed for heat sources above 300 °C. Based on a comprehensive performance comparison, the application of the ORC using R141 b is preferable for 200 to 300 °C flue gas. For 300 to 450 °C flue gas, CORC is an alternative technology to improve the efficiency and quality of waste heat utilization. For flue gas above 450 °C, S-ORC can achieve higher efficiency and power generation than conventional SRC, with a relatively small negative pressure and high dryness of the turbine outlet steam. Hence, S-ORC can be considered as a substitute for SRC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.