Abstract
Synonymous mutations do not change the encoded amino acids but may alter the structure or function of an mRNA in ways that impact gene function. Advances in next generation sequencing technologies have detected numerous synonymous mutations in the human genome. Several computational models have been proposed to predict deleterious synonymous mutations, which have greatly facilitated the development of this important field. Consequently, there is an urgent need to assess the state-of-the-art computational methods for deleterious synonymous mutation prediction to further advance the existing methodologies and to improve performance. In this regard, we systematically compared a total of 10 computational methods (including specific method for deleterious synonymous mutation and general method for single nucleotide mutation) in terms of the algorithms used, calculated features, performance evaluation and software usability. In addition, we constructed two carefully curated independent test datasets and accordingly assessed the robustness and scalability of these different computational methods for the identification of deleterious synonymous mutations. In an effort to improve predictive performance, we established an ensemble model, named Prediction of Deleterious Synonymous Mutation (PrDSM), which averages the ratings generated by the three most accurate predictors. Our benchmark tests demonstrated that the ensemble model PrDSM outperformed the reviewed tools for the prediction of deleterious synonymous mutations. Using the ensemble model, we developed an accessible online predictor, PrDSM, available at http://bioinfo.ahu.edu.cn:8080/PrDSM/. We hope that this comprehensive survey and the proposed strategy for building more accurate models can serve as a useful guide for inspiring future developments of computational methods for deleterious synonymous mutation prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.