Abstract

Oscillating microstructures are well established and find application in many fields. These include force sensors, e.g. AFM micro-cantilevers or accelerometers based on resonant suspended plates. This contribution presents two vibrating mechanical structures acting as force sensors in liquid media in order to measure hydrodynamic interactions. Rectangular cross section microcantilevers as well as circular cross section wires are investigated. Each structure features specific benefits, which are discussed in detail. Furthermore, their mechanical parameters and their deflection in liquids are characterized. Finally, an inverse analytical model is applied to calculate the complex viscosity near the resonant frequency for both types of structures. With this approach it is possible to determine rheological parameters in the kilohertz range in situ within a few seconds. The monitoring of the complex viscosity of yogurt during the fermentation process is used as a proof of concept to qualify at least one of the two sensors in opaque mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.