Abstract

Survivability of silicon-carbide (SiC) mosfet modules during short circuit (SC) is essential for modern power electronics systems due to large economic implications. SiC mosfet modules exhibit narrow SC withstand times and generally much lower SC robustness than silicon (Si) insulated-gate bipolar transistors (IGBTs). This puts a critical concern on their utilization, further stressing the importance of reliable protection. This article presents a comprehensive analysis and discussion on the SiC mosfet module SC protection and performance comparison between conventional desaturation detection, previously used for Si IGBT protection, and Rogowski switch-current sensor (RSCS) detection. In addition, this article presents the experimental design for soft turn-off as a reaction to the SC detection to avoid excessive overshoots during the abrupt turn-off of the SC current. To perform different types of SC with various fault inductances on different temperatures, and for the sake of fair comparison under the same conditions, a gate-driver unit for 1.2 kV SiC mosfet half-bridge modules is developed containing both detection methods. The results demonstrate that both methods are successful in protecting the module in all SC types, with superiority of the RSCS detection and concerns for desaturation detection in high-inductance and high dc-bus voltage SC events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.