Abstract

BackgroundMarek’s disease (MD) is a commercially important neoplastic disease of chickens caused by the Marek’s disease virus (MDV), a naturally occurring oncogenic alphaherpesvirus. Enhancing MD genetic resistance is desirable to augment current vaccines and other MD control measures. High throughput sequencing was used to profile splenic transcriptomes from individual F1 progeny infected with MDV at 4 days of age from both outbred broilers (meat-type) and inbred layer (egg-type) chicken lines that differed in MD genetic resistance. The resulting information was used to identify SNPs, genes, and biological pathways exhibiting allele-specific expression (ASE) in response to MDV infection in each type of chicken. In addition, we compared and contrasted the results of pathway analyses (ASE and differential expression (DE)) between chicken types to help inform on the biological response to MDV infection.ResultsWith 7 individuals per line and treatment group providing high power, we identified 6,132 single nucleotide polymorphisms (SNPs) in 4,768 genes and 4,528 SNPs in 3,718 genes in broilers and layers, respectively, that exhibited ASE in response to MDV infection. Furthermore, 548 and 434 genes in broilers and layers, respectively, were found to show DE following MDV infection. Comparing the datasets, only 72 SNPs and 850 genes for ASE and 20 genes for DE were common between the two bird types. Although the chicken types used in this study were genetically different, at the pathway level, both TLR receptor and JAK/STAT signaling pathways were enriched as well as exhibiting a high proportion of ASE genes, especially at the beginning of both above mentioned regulatory pathways.ConclusionsRNA sequencing with adequate biological replicates is a powerful approach to identify high confidence SNPs, genes, and pathways that are associated with transcriptional response to MDV infection. In addition, the SNPs exhibiting ASE in response to MDV infection provide a strong foundation for determining the extent to which variation in expression influences MD incidence plus yield genetic markers for genomic selection. However, given the paucity of overlap among ASE SNP sets (broilers vs. layers), it is likely that separate screens need to be incorporated for each population. Finally, comparison of gene lists obtained between these two diverse chicken types indicate the TLR and JAK/STAT signaling are conserved when responding to MDV infection and may be altered by selection of genes exhibiting ASE found at the start of each pathway.

Highlights

  • Marek’s disease (MD) is a commercially important neoplastic disease of chickens caused by the Marek’s disease virus (MDV), a naturally occurring oncogenic alphaherpesvirus

  • We confirmed these differences in two MDV challenge trials (Table 1), where the Red line birds had about twice the MD incidence as those from the Blue line

  • The primary objective of this study was to identify single nucleotide polymorphism (SNP) exhibiting allele-specific expression (ASE) responding to MDV infection, which would provide a strong foundation for future experiments designed to identify genes conferring genetic resistance to MD

Read more

Summary

Introduction

Marek’s disease (MD) is a commercially important neoplastic disease of chickens caused by the Marek’s disease virus (MDV), a naturally occurring oncogenic alphaherpesvirus. High throughput sequencing was used to profile splenic transcriptomes from individual F1 progeny infected with MDV at 4 days of age from both outbred broilers (meat-type) and inbred layer (egg-type) chicken lines that differed in MD genetic resistance. The resulting information was used to identify SNPs, genes, and biological pathways exhibiting allele-specific expression (ASE) in response to MDV infection in each type of chicken. We compared and contrasted the results of pathway analyses (ASE and differential expression (DE)) between chicken types to help inform on the biological response to MDV infection. Marek’s disease (MD) is a lymphoproliferative disease of chickens caused by the Marek’s disease virus (MDV or Gallid herpesvirus 2), a naturally occurring alphaherpesvirus [1,2]. The lack of sterilizing immunity is thought to be a major contributing factor for MDV field strains evolving to higher virulence [5], which can result in unpredictable and devastating disease outbreaks in vaccinated commercial flocks

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call