Abstract

HIV-1 protease which is responsible for the generation of infectious viral particles by cleaving the virus polypeptides, play an indispensable role in the life cycle of HIV-1. Knowledge of the substrate specificity of HIV-1 protease will pave the way of development of efficacious HIV-1 protease inhibitors. In the prediction of HIV-1 protease cleavage site techniques, many e ff orts have been devoted. Last decade, several works have approached the prediction of HIV-1 protease cleavage site problem by applying a number of methods from the field of machine learning. However, it is still difficult for researchers to choose the best method due to the lack of an effective and up-to-date comparison. Here, we have made an extensive study on feature encoding techniques for the problem of HIV-1 protease specificity on diverse machine learning algorithms. Also, for the first time, we applied OEDICHO technique, which is a combination of orthonormal encoding and the binary representation of selected 10 best physicochemical properties of amino acids derived from Amino Acid index database, to predict HIV-1 protease cleavage sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.