Abstract
We show that on cactus graphs the Szeged index is bounded above by twice the Wiener index. For the revised Szeged index the situation is reversed if the graph class is further restricted. Namely, if all blocks of a cactus graph are cycles, then its revised Szeged index is bounded below by twice its Wiener index. Additionally, we show that these bounds are sharp and examine the cases of equality. Along the way, we provide a formulation of the revised Szeged index as a sum over vertices, which proves very helpful, and may be interesting in other contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.