Abstract

The vapour phase hydroxylation of benzene to phenol by two different methods has been investigated. In the first, a mixture of oxygen and hydrogen using a Pd membrane tubular reactor with and without second catalyst was used. Hydrogen dissociated on the palladium layer and reacted with oxygen to give active oxygen species, which reacted with benzene to produce phenol. The slow step in the overall reaction is the formation of usable hydrogen peroxide. Using a second catalyst changed the productivity, and conversion of benzene was increased by changing the length and diameter of porous reactor tubes. Low phenol productivity and selectivity was observed and showed that hydroxylation of benzene using a Pd membrane reactor is a far from economic method. In the second, selective oxidation of benzene with N 2O on iron zeolite of different SiO 2/Al 2O 3 composition, with concentration of iron rating from 50 to 2000 ppm was investigated. The effects of temperature, reactant mole ratio, and contact time were investigated. Phenol was formed with near 97% selectivity and average productivity of 5 mmol g −1 h −1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.