Abstract
Hierarchical learning models are ubiquitously employed in information science and data engineering. The structure makes the posterior distribution complicated in the Bayes method. Then, the prediction including construction of the posterior is not tractable though advantages of the method are empirically well known. The variational Bayes method is widely used as an approximation method for application; it has the tractable posterior on the basis of the variational free energy function. The asymptotic behavior has been studied in many hierarchical models and a phase transition is observed. The exact form of the asymptotic variational Bayes energy is derived in Bernoulli mixture models and the phase diagram shows that there are three types of parameter learning. However, the approximation accuracy or interpretation of the transition point has not been clarified yet. The present paper precisely analyzes the Bayes free energy function of the Bernoulli mixtures. Comparing free energy functions in these two Bayes methods, we can determine the approximation accuracy and elucidate behavior of the parameter learning. Our results claim that the Bayes free energy has the same learning types while the transition points are different.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.