Abstract

In this paper, we present three implementations of an online evolvable hardware classifier of sonar signals on a 28 nm process technology FPGA, and compare their features using the most relevant metrics in the design of hardware: area, timing, power consumption, energy consumption, and performance. The three implementations are: one full-hardware implementation in which all the modules of the evolvable hardware system, the evaluation module and the Evolutionary Algorithm have been implemented on the ZedBoard™ Zynq® Evaluation Kit (XC7-Z020 ELQ484-1); and two hardware/software implementations in which the Evolutionary Algorithm has been implemented in software and run on two different processors: Zynq® XC7-Z020 and MicroBlaze™. Additionally, each processor-based implementation has been tested at several processor speeds. The results prove that the full-hardware implementation always performs better than the hardware/software implementations by a considerable margin: up to $$\times \,7.74$$ faster than MicroBlaze, between $$\times \,1.39$$ and $$\times \,2.11$$ faster that Zynq, and $$\times \,0.198$$ lower power consumption. However, the hardware/software implementations have the advantage of being more flexible for testing different options during the design phase. These figures can be used as a guideline to determine the best use for each kind of implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.