Abstract
This study compared the tolerance limits of selected bacterial (Bacillus licheniformis, Brevibacillus lactosporus and Pseudomonas putida) and protozoan (Aspidisca, Trachelophyllum and Peranema) species to V5+ in wastewater systems. The isolates were exposed to various concentrations of V5+ (from 10 to 240 ppm), and their tolerance limits to this heavy metal were assessed at different temperatures (25, 30, 35 and 40°C) and pHs (4, 6, 7, 8 and 10) for 5 days. Chemical oxygen demand (COD), dissolved oxygen (DO) and die-off rate of the isolates were measured using standard methods. The results indicated that test isolates were tolerant to V5+, with a gradual decrease in their colony/cell counts when V5+ concentration gradually increased. Bacterial species were found to be more significantly tolerant (MIC: 110–230 ppm V5+) to V5+ than protozoan species which showed an earlier total inhibition/die-off rate (100%) at 60–100 ppm V5+ (MIC) (p < 0.001). P. putida was the most tolerant bacterial species (MIC: 230 ppm V5+) and Aspidisca sp. the most sensitive protozoan species (MIC: 60 ppm V5+). An increase in COD and DO removal was observed throughout the experimental period. The highest COD increase (up to 237.11%) and DO removal (almost 100%) were observed in mixed liquor inoculated with P. putida after exposure to 10 ppm V5+. Changes in pH and temperature affected the tolerance limits of all isolates. This study suggests the use of these tolerant bacterial and protozoan species in the bioremediation of V5+ from domestic and industrial wastewater under the control of pH and temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.