Abstract
Controlling the microstructure homogeneity is crucial in achieving high quality tantalum (Ta) sputtering targets used in integrated circuit fabrication. Unluckily, traditional rolling easily generates a microstructure gradient along the thickness direction in Ta sheets. The deformation and recrystallization behavior of unidirectional and clock rolled Ta with an 87% strain were therefore systematically compared to investigate whether the change of strain-pass can effectively ameliorate the microstructure gradient along the thickness. Electron backscatter diffraction was used to analyze the misorientation characteristics of the deformed grains. A strong microstructure gradient exists in the unidirectional rolled (UR) sheets. Many microshear bands and well-defined microbands occurred in {111} deformed grains in the UR sheets, especially in the center region, while the grain fragmentation with {111} and {100} orientation in the clock rolled (CR) sheets was more homogenous along the thickness. The kernel average misorientation (KAM) and grain reference orientation deviation-hyper (GROD-Hyper) further confirmed these differences. X-ray line profile analysis (XLPA) indicated that the stored energy distribution was more inhomogeneous in the UR sheets. Schmid factor analysis suggested that the strain path changes due to clock rolling promoted the activation of multiple slip systems in {111} oriented grains. Upon static annealing, homogeneous nucleation combined with a slower grain growth rate resulted in finer and more uniform grain size for the CR sheet. In contrast, a strong recrystallization microstructure-gradient along the thickness formed in the UR sheets, which is attributed to the fact that the higher stored energy and more preferential nucleation sites led to faster recrystallization in the center region, as compared with the surface region. Thus, clock rolling can effectively improve the homogeneity of the through-thickness recrystallization microstructure of Ta sheets.
Highlights
Tantalum, a transition metal with a body-centered-cubic (BCC) structure, is widely used in the integrated circuit industry (IC), for example, as sputtering targets [1]
The effects of clock rolling, which rotates the sample by 135◦ with respect to the previous rolling direction, on the deformed and recrystallized microstructure of tantalum sheets along the thickness were systematically investigated in the present study
More homogeneous γ and θ fibers along the thickness direction can be formed by clock rolling
Summary
A transition metal with a body-centered-cubic (BCC) structure, is widely used in the integrated circuit industry (IC), for example, as sputtering targets [1]. The properties of deposited thin films are determined by the performance of the sputtering targets during the sputtering. Sputtering effectiveness depends highly on the crystallographic orientation (generally referred to as texture) of each grain due to different densities of atomic plane, and texture clusters have unfavorable effects on the uniformity of films [2,3]. The grain size plays an important role in the sputtering rate. Targets with fine grain size enable a higher deposition rate than those with large grain size because grain boundaries are more readily attacked during sputtering [4].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.