Abstract
Water infiltration into soil is an important process in hydrologic cycle; however, its measurement is difficult, time-consuming and costly. Empirical and physical models have been developed to predict cumulative infiltration (CI), but are often inaccurate. In this study, several novel standalone machine learning algorithms (M5Prime (M5P), decision stump (DS), and sequential minimal optimization (SMO)) and hybrid algorithms based on additive regression (AR) ( i.e ., AR-M5P, AR-DS, and AR-SMO) and weighted instance handler wrapper (WIHW) ( i.e ., WIHW-M5P, WIHW-DS, and WIHW-SMO) were developed for CI prediction. The Soil Conservation Service (SCS) model developed by the United States Department of Agriculture (USDA), one of the most popular empirical models to predict CI, was considered as a benchmark. Overall, 154 measurements of CI (explanatory/input variables) were taken from 16 sites in a semi-arid region of Iran (Illam and Lorestan provinces). Six input variable combinations were considered based on Pearson correlations between candidate model inputs (time of measuring and soil bulk density, moisture content, and sand, clay, and silt percentages) and CI. The dataset was divided into two subgroups at random: 70% of the data were used for model building (training dataset) and the remaining 30% were used for model validation (testing dataset). The various models were evaluated using different graphical approaches (bar charts, scatter plots, violin plots, and Taylor diagrams) and quantitative measures (root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe efficiency (NSE), and percent bias (PBIAS)). Time of measuring had the highest correlation with CI in the study area. The best input combinations were different for different algorithms. The results showed that all hybrid algorithms enhanced the CI prediction accuracy compared to the standalone models. The AR-M5P model provided the most accurate CI predictions (RMSE = 0.75 cm, MAE = 0.59 cm, NSE = 0.98), while the SCS model had the lowest performance (RMSE = 4.77 cm, MAE = 2.64 cm, NSE = 0.23). The differences in RMSE between the best model (AR-M5P) and the second-best (WIHW-M5P) and worst (SCS) were 40% and 84%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.