Abstract

Pulsed laser ablation of LiF was studied using both nanosecond (ns) and femtosecond (fs) pulses at 248nm. Optical emission from electronically excited Li and F atoms in the plume of ejected material was investigated by wavelength, time and spatially resolved imaging methods. Careful analysis of images of species selected optical emission yielded estimates of the mean velocities of the Li+ ions arising in both excitation schemes (∼11 and ∼13km∕s, respectively), and highlighted the dramatic effects of radiation trapping, most notably by the reabsorption of Li(2p→2s) emission by ground state Li atoms in the ns ablation studies. Plumes formed by fs excitation are found to contain a higher fraction of energetic∕electrically excited components, including excited F atoms and ions, indicative of an explosive boiling mechanism, whereas the ablation plume resulting from ns ablation is deduced to arise primarily from thermal evaporation of the transiently heated target surface. The amount of target material removed per shot is significantly less in the case of fs excitation. The density (and size) of unwanted droplets in films grown by fs ablation is much smaller than in the case of ns ablation, especially on substrates mounted in an off-axis ablation geometry, implying that hydrodynamic sputtering is much reduced by the use of short pulses and that fs ablation must be the preferred route to forming very thin LiF coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.