Abstract

Suites of Best Management Practices (BMPs) are usually selected to be economically and environmentally efficient in reducing nonpoint source (NPS) pollutants from agricultural areas in a watershed. The objective of this research was to compare the selection and placement of BMPs in a pasture-dominated watershed using multiobjective optimization and targeting methods. Two objective functions were used in the optimization process, which minimize pollutant losses and the BMP placement areas. The optimization tool was an integration of a multi-objective genetic algorithm (GA) and a watershed model (Soil and Water Assessment Tool—SWAT). For the targeting method, an optimum BMP option was implemented in critical areas in the watershed that contribute the greatest pollutant losses. A total of 171 BMP combinations, which consist of grazing management, vegetated filter strips (VFS), and poultry litter applications were considered. The results showed that the optimization is less effective when vegetated filter strips (VFS) are not considered, and it requires much longer computation times than the targeting method to search for optimum BMPs. Although the targeting method is effective in selecting and placing an optimum BMP, larger areas are needed for BMP implementation to achieve the same pollutant reductions as the optimization method.

Highlights

  • Nonpoint source (NPS) pollution from agricultural watersheds has become one of the major water quality concerns [1,2]

  • The maximum population size tested in this study was 5,000, with which the genetic algorithm (GA) optimization tool could result in the most spread in the solution space in terms of the percentage of Best Management Practices (BMPs)-implemented pasture area for all different sets of BMP options

  • Options (All) were selected for comparison (Figures 3 and 4). It is because buffer strips are the most effective BMP in reducing pollutant losses and considerably greater pollutant reduction is expected if buffer strips with a vegetated filter strips (VFS) ratio of 42 are considered in the suite of BMP options

Read more

Summary

Introduction

Nonpoint source (NPS) pollution from agricultural watersheds has become one of the major water quality concerns [1,2]. Intensive agricultural practices are considered sources of significant amounts of nutrients, especially nitrogen (N) and phosphorus (P), pesticides, fecal bacteria and sediment to receiving water bodies [6,7], reducing the ability of ecosystems to provide goods and services [5]. In an agricultural watershed with concentrated animal production operations, improper usage of manure with commercial fertilizers could result in excessive nutrient losses from the fields to the receiving water bodies [8,9]. Sediment losses from top soil containing relatively large amounts of nutrients can threaten water quality and decrease the productive capacity of the land [10]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.